Notes

Logical Equivalences [ English ]

< PrevNext >

Below is a standard Logical Equivalences Table used in propositional logic and discrete mathematics. It shows common pairs of logically equivalent expressions.

Logical Equivalences Table

Name of LawLogical Equivalence
Identity Laws( p \land T \equiv p )
( p \lor F \equiv p )
Domination Laws( p \lor T \equiv T )
( p \land F \equiv F )
Idempotent Laws( p \lor p \equiv p )
( p \land p \equiv p )
Double Negation Law( \neg(\neg p) \equiv p )
Commutative Laws( p \lor q \equiv q \lor p )
( p \land q \equiv q \land p )
Associative Laws( (p \lor q) \lor r \equiv p \lor (q \lor r) )
( (p \land q) \land r \equiv p \land (q \land r) )
Distributive Laws( p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) )
( p \land (q \lor r) \equiv (p \land q) \lor (p \land r) )
De Morgan’s Laws( \neg(p \land q) \equiv \neg p \lor \neg q )
( \neg(p \lor q) \equiv \neg p \land \neg q )
Absorption Laws( p \lor (p \land q) \equiv p )
( p \land (p \lor q) \equiv p )
Negation Laws( p \lor \neg p \equiv T )
( p \land \neg p \equiv F )
Implication Law( p \rightarrow q \equiv \neg p \lor q )
Biconditional Law( p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) )
Contrapositive Law( p \rightarrow q \equiv \neg q \rightarrow \neg p )
< PrevNext >